Algorithm: [iterative] design of experiments
The design of experiments API follows the GdR MASCOT-NUM template standard, for R language.
Most of algorithms are implemented in a file ‘MyAlgorithm.R’ located in ‘Funz/plugins/doe’ directory, mainly requiring a header and four methods:
#title:...
#help:...
#author:...
#type:...
#output:...
#options:...
#options.help:...
#' constructor and initializer of algorithm
#' @param options algorithm options
#' @return algorithm object : environment options, status
MyAlgorithm <- function(options) {
...
algorithm = new.env()
...
return(algorithm)
}
#' first design building.
#' @param algorithm object handling options, status, ...
#' @param input the input variables and their properties (like min, max)
#' @param output the output targets names
#' @return matrix of first design step
getInitialDesign <- function(algorithm,input,output) {
...
return(matrix(...,ncol=length(input)))
}
#' iterated design building.
#' @param algorithm object handling options, status, ...
#' @param X matrix of current doe variables
#' @param Y matrix of current results
#' @return matrix of next doe step
getNextDesign <- function(algorithm,X,Y) {
...
return(matrix(...,ncol=ncol(X)))
}
#' final analysis.
#' @param algorithm object handling options, status, ...
#' @param X matrix of current doe variables
#' @param Y matrix of current results
#' @return HTML string of analysis
displayResults <- function(algorithm,X,Y) {
...
return(html)
}
Note that you can also test and use these templated algorithms from R (without Funz), using the templr package:
install.packages('templr')
library(templr)
test_objective_function = function(X) {
x1 = X[1]
x2 = X[2]
... #
}
run.algorithm(algorithm_file = 'MyAlgorithm.R',
objective_function = test_objective_function,
input = list( x1=list(min=0,max=1), x2=list(min=0,max=1)),
options = list(maxit=10),
work_dir=tempdir())
- Previous
- Next