Simulation on local network or cloud subnet
An efficient way to launch many simulation is to use other local network computers, while using your own computer to launch Funz commands.
Assuming that the simulation software (say Modelica, our standard example) is already installed on the other local network computers, on each you just have to:
- intall Funz:
- Python:
pip install Funz
, thenimport Funz
- R:
remotes::install_github('Funz/Funz.R')
, thenlibrary(Funz)
- bash/cmd.exe: download and unzip Funz-Bash.zip or Funz-Cmd.exe.zip
- Python:
- install simulation plugin:
- Python:
Funz.installModel('Modelica')
- R:
Funz::install.Model('Modelica')
- bash/cmd.exe: download and unzip plugin-Modelica.zip
- Python:
- if needed, setup simulation script ‘Funz/scripts/Modelica.sh’ or ‘Funz/scripts/Modelica.bat’
- add your own computer IP (say 192.168.1.123) in the ‘Funz/calculator.xml’ file:
<CALCULATOR> ... <HOST name="192.168.1.123" port="19001"> <HOST name="192.168.1.123" port="19002"> <HOST name="192.168.1.123" port="19003"> <HOST name="192.168.1.123" port="19004"> ... </CALCULATOR>
- start background Funz computing daemon:
- Python:
Funz.startCalculators(1)
- R:
Funz::startCalculators(1)
- bash/cmd.exe: launch backend
Funz/FunzDaemon.sh
orFunz/FunzDaemon.bat
- Python:
You can now check that these computers are well setup by running basic example on your own, that will use one of the local network computers:
- check that you well receive network Funz heartbeats:
nc -lu 19001
orsocat -u udp-recv:19001
- launch basic calculation:
* Python:
Funz.Run(model="Modelica",input_files="samples/NewtonCooling.mo")
* R:Funz::Run(model="Modelica",input.files="samples/NewtonCooling.mo")
* bash/cmd.exe:./Funz.sh Run -m Modelica -if samples/NewtonCooling.mo
or./Funz.bat Run -m Modelica -if samples/NewtonCooling.mo